Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features

نویسندگان

  • Hamidreza Abbaspour
  • Seyyed Mohammad Razavi
  • Nasser Mehrshad
چکیده

Over the years, the feasibility of using Electrocardiogram (ECG) signal for human identification issue has been investigated, and some methods have been suggested. In this research, a new effective intelligent feature selection method from ECG signals has been proposed. This method is developed in such a way that it is able to select important features that are necessary for identification using analysis of the ECG signals. For this purpose, after ECG signal preprocessing, its characterizing features were extracted and then compressed using the cosine transform. The more effective features in the identification, among the characterizing features, are selected using a combination of the genetic algorithm and artificial neural networks. The proposed method was tested on three public ECG databases, namely, MIT-BIH Arrhythmias Database, MITBIH Normal Sinus Rhythm Database and The European ST-T Database, in order to evaluate the proposed subject identification method on normal ECG signals as well as ECG signals with arrhythmias. Identification rates of 99.89% and 99.84% and 99.99% are obtained for these databases respectively. The proposed algorithm exhibits remarkable identification accuracies not only with normal ECG signals, but also in the presence of various arrhythmias. Simulation results showed that the proposed method despite the low number of selected features has a high performance in identification task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm

Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...

متن کامل

Signal Identification Using a New High Efficient Technique

Automatic signal type identification (ASTI) is an important topic for both the civilian and military domains. Most of the proposed identifiers can only recognize a few types of digital signal and usually need high levels of SNRs. This paper presents a new high efficient technique that includes a variety of digital signal types. In this technique, a combination of higher order moments and hi...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

Diagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data

Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015